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Content

1. Historical context

2. Reminder of 4D-Var derivation

3. Developments in error modelling

4. Coping with Butterflies

5. 4D-Ensemble-Var

I only have time to discuss general principles.  

There will be more detail on many topics in later seminars.
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Historical Background:
What has been important for getting the 
best NWP forecast?

NWP systems are improving by 1 day of predictive 
skill per decade.  This has been due to:

1. Model improvements, especially resolution.

2. Careful use of forecast & observations, allowing 
for their information content and errors.     
Achieved by variational assimilation e.g. of satellite radiances. 
(Simmons & Hollingsworth 2002)

3. Advanced assimilation using forecast model: 
4D-Var.

4. Better observations.

(over last 3 decades)
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Performance Improvements

Met Office RMS surface pressure error over the N. Atlantic & W. Europe

“Improved by about a day per decade”
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60 Years of Met Office Computers
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Relative scores 2003-5   + 
dates of 4D-Var implementation

RMS errors with mean intra-annual variability removed
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Impact of different observing systems.

Current contributions of  
parts of the existing 
observing system to the 
large-scale forecast skill 
at short and medium-
range. The green colour 
means the impact is 
mainly on the mass and 
wind field. The blue 
colour means the impact 
is mainly on humidity 
field. The contribution is 
primarily measured on 
large-scale upper-air 
fields. The red horizontal 
bars give an indication of 
the spread of results 
among the different 
impact studies so far 
available.

Fourth WMO Workshop 
on the Impact of Various 
Observing Systems on 
NWP.                   
Geneva, Switzerland,    
19-21 May 2008



JMA NWP/Reanalysis performance

• Conclude: Most forecast benefit due to forecast/DA not more observations.

• Caveat: Not true for all metrics (e.g. precipitation shows bigger impact of obs).

SH NWP: 1.4m/yr

NH NWP: 0.6m/yr

SH RE: 0.4m/yr

NH RE: 0.1m/yr

Onogi et al. (2007)

NWP=Changing model/DA Reanalysis=Fixed model/DA

Observation network evolves in both NWP and reanalysis



Historical Background:
Continuing Improvement of a Complex System

• NWP improvements are due to a synergistic combination 
of improvements of forecast model, DA and observations.

• Each helps the other.

• Total NWP system is very large, complex and expensive.  

• We cannot expect to understand it completely as a single entity.

• We cannot afford thorough testing of each improvement.

• Best to base each improvement of scientific insight and 
mathematical analysis of one component.

• With belief (checked by testing) that theoretically better parts will 
eventually give a better system.



2. Reminder of 4D-Var 
Derivations

• Deterministic: fitting a model 
trajectory to observations.

• Statistical: Bayesian combination 
of model and observations, allowing 
for errors in each.
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Simple 4D-Var, as a least-squares best fit of a 
deterministic model trajectory to observations
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The deterministic 4D-Var equations
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Bayesian posterior pdf.

Assume 
Gaussians

But nonlinear model makes pdf non-Gaussian: 
full pdf is too complicated to be allowed for.

So seek mode of pdf
by finding minimum 
of penalty function

Notation (to avoid summations over time): variables are 4D, operators produce 4D results.
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Deterministic 4D-Var

Initial PDF is approximated by a Gaussian.

Descent algorithm only explores a small part of the PDF, 
on the way to a local minimum.

4D analysis is a trajectory of the full model,
optionally augmented by a model error correction term.



© Crown copyright   Met Office  Andrew Lorenc  14

When does deterministic 4D-Var using 
“automatic” adjoint methods not work?

Thermostats: - Fast processes which are modulated to maintain a 
longer-time-scale “balance” (e.g. boundary layer fluxes).

Limits to growth: - Fast processes which in a nonlinear model are limited 
by some available resource (e.g. evaporation of raindrops).

Butterflies: - Fast processes which are not predictable over a long 
4D-Var time-window.  (e.g. eddies with short space- & time-scales).

Observations of intermittent processes: - If something (e.g. a cloud or 
rain) is missing from a state, then the gradient does not say what to 
do to make it appear.

These are fundamental atmospheric processes – it is impossible to 
write a good NWP model without representing them.
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Statistical, incremental 4D-Var

Statistical 4D-Var approximates entire PDF by a Gaussian.

4D analysis increment is a trajectory of the PF model,
optionally augmented by a model error correction term.
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Statistical 4D-Var  - equations
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Independent, Gaussian 
background and model 

errors   ⇒ non-Gaussian 
pdf for general y:

Incremental linear approximations in 
forecasting model predictions of 

observed values converts this to an 

approximate Gaussian pdf:

The mean of this 

approximate pdf is identical 

to the mode, so it can be 

found by minimising:

Lorenc (2003a)
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Incremental 4D-Var with 
Outer Loop
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Testing PF model for use in 4D-Var 

Evolution 
of solution 
error in PF 

model
(rms linearization 

error

/
rms non-linear 

increment)

v

p

q

u

w

theta
Ballard et al (2006)
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ECMWF Testing TL model in 
4D-Var

Radnoti et al. (2005)
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Benefit of outer-loop

• The outer-loop is normally justified as a re-linearisation of 
a non-quadratic minimisation.

• It can also be thought of as a way of correcting for an 
imperfect Perturbation model, by reducing the amplitude 
of the perturbations whose trajectory is approximated:

• Of course, with an imperfect perturbation model, there is 
no guarantee that an outer-loop will converge.

( ) ( )( ), ,g g
H Mδ= +y HM x η x η% %



3. Developments in error 
modelling
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Background error (prior) covariance 
B modelling assumptions

The first operational 3D multivariate statistical analysis method (Lorenc 1981) 
made the following assumptions about the B which characterizes background 
errors,       all of which are wrong!

• Stationary – time & flow invariant

• Balanced – predefined multivariate relationships exist

• Homogeneous – same everywhere

• Isotropic – same in all directions

• 3D separable – horizontal correlation independent of vertical levels or 
structure & vice versa.

Since then many valiant attempts have been made to address them individually, 
but with limited success because of the errors remaining in the others.            
The most attractive ways of addressing them all are long-window 4D-Var 
or hybrid ensemble-VAR.
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3D Covariances dynamically 
generated by 4D-Var

If the time-period is long enough, 
the evolved 3D covariances also 
depend on the dynamics:

( )( ) ( )( )0
1 1 0 0 1 1− −= K K

n

T T T

n nx t x t
B M M M B M M M

Cross-section of the 
4D-Var structure 
function (using a 
24 hour window).

Thépaut, Jean-Nöel, P. Courtier, 
G. Belaud and G Lemaître: 1996 
"Dynamical structure functions in 
a four-dimensional variational 
assimilation: A case study" Quart. 
J. Roy. Met. Soc., 122122122122, 535-561
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Single observation tests

Standard 3D-Var  

Standard 4D-Var  50/50 hybrid 3D-Var  

Pure ensemble 3D-Var  

Ensemble RMS  

u response to a single u observation at centre of window

Horizontal

Adam Clayton



The nonlinear “Hólm” humidity 
transform

• Several centres have implemented a nonlinear humidity 
transform to compensate for the non-Gaussian errors of 
humidity forecasts (Hólm 2003, Gustafsson et al. 2011, Ingleby et al. in preparation)

• The “principle of symmetry” suggests a non-Gaussian prior:

• This makes the variational minimisation implicit;       
ECMWF and HIRLAM iterate this term in the outer-loop, 
The Met Office include it in a non-quadratic inner 
minimisation.

 ( ) ( )( )2

exp 2 ,
b b b

P RH RH RH RH S RH RH ∝ −  



Effect of 0% & 100% limits on RH

P(x│xb) is biased, 
with mean given by 
blue line.

⇒ “best” estimate 
obtained by 
modifying xb away 
from limits.

This would damage 
forecasts of cloud 
and rain!!

Diagram from Lorenc (2007)



Principle of symmetry and Hólm
transform – a Bayesian interpretation.

What are the prior and loss function which make this optimal?

• The distribution of values in the background, generated by 
the model, is close to correct – we have the right cloud cover 
on average.

• It is important to us to retain this correct distribution – more 
so than to reduce the expected RMS error at each point.

• The  Hólm transform constructs a (skewed) prior whose 
mode is the background.

• We rely on a minimisation which finds this mode (not the 
mean) and hence returns the model background unaltered in 
the absence of observations.
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Fitting models of model error

• The VAR approach encourages us to build physically based 
models of errors: observational, representativity, background, 
observational bias, forecast model, … This approach is more 
likely to give a DA method applicable to a wide range of 
regimes.

• We cannot uniquely fit these models to one set of o−b
statistics.  Nevertheless, as long as we have conceptual insight
as to what should be common, we can use statistics from a 
range of regimes to estimate some of them (e.g. Hollingsworth 
and Lonnberg 1986, Desroziers et al. 2005, Dee 2005).

• Once we have a model of errors, we can augment the forecast 
model and determine uncertain coefficients in VAR.      
Tremolet (2007) has started applying these ideas to model 
error, but much remains to be done.



4. Coping with Butterflies



Error growth v scale

Growth of errors initially confined to smallest scales, according to a theoretical model 

Lorenz (1984) . Horizontal scales are on the bottom, and the upper curve is the full 

atmospheric motion spectrum. (from Tribbia & Baumhefner 2004).
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Long-window 4D-Var for a 
chaotic model

• Lorenc and Payne (2007) discussed 4D-Var for models 
with a wide range of scales – the small scales behave 
chaotically and cause problems.  They suggested using a 
regularised linear model which filters poorly observed 
small scales (e.g. eddies in ocean DA, Hoteit et al. 2005).

• Abarbanel et al. (2010), approaching data assimilation as 
synchronised chaos, say that there must be enough 
[observational] controls to move the positive conditional 
Lyapunov exponents on the synchronization manifold to 
negative values. (E.g. this was the case for the toy model used by Fisher et al. 
(2005)).

• Modern high-resolution global NWP models represent 
scales and regions (e.g. the middle atmosphere, Polavarapu et al. 2005)

where neither approach is easy to apply.
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Differences between identical NWP 
assimilations due to small initial perturbations.

Global RMS 
differences 
between 
analysed 
u−fields at 
different 
levels.

Peter Jermey
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Nonlinearity – benefitting 
from the attractor

• The atmospheric state is fundamentally governed by nonlinear effects, e.g. 
convective-radiative equilibrium, condensation, cloud & precipitation.  
Nonlinear chaotic systems have a fuzzy attractor manifold of states that 
occur in reality – far fewer than all possible states.  This gives us recognisable
weather systems and practical weather prediction!

• Usual minimum variance “best” estimate is not on the attractor.

• The best practical way of defining the attractor in by using the full model, as 
we have for years in methods for spin-up and diabatic initialisation.  

• The VAR penalty function can only approximate near-linear aspects of this 
balance.  We need to add an additional prior that we want the analysis to be 
a state which the model might generate.

• Incremental VAR with an outer-loop can get us closer to this.



5. 4D-Ensemble-Var
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Scalability – exploiting 
massively parallel computers

• 4D-Var as usually implemented requires sequential running of a 
reduced resolution linear PF model and its adjoint.  It will be difficult 
to exploit computers with more (but not faster) processors to make 
4D−Var run as fast at higher resolution.

• Improved current 4D-Var algorithms postpone the problem a few 
years, but it will probably return, hitting 4D-Var before the high-
resolution forecast models.

• 4DCV 4D-Var can be parallelised over each CV segment, but is 
difficult to precondition well.

• Ensemble DA methods run a similar number of model integrations in 
parallel.  It is attractive to replace the iterated running of the PF 
model by precalculated ensemble trajectories:  4D−Ensemble-Var. 
Other advantages of VAR can be retained.



© Crown copyright   Met Office  Andrew Lorenc  36

Incremental 4D-Ensemble-Var

Statistical 4D-Var approximates entire PDF by a Gaussian.

4D analysis is a (localised) linear combination of nonlinear 
trajectories.  It is not itself a trajectory.
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4D-En-Var  - equations

Analysis variables are the 

localisation fields       multiplying 

each perturbation trajectory        

to make the increment trajectory: 
Lorenc (2003b), Liu et al. (2008), Buehner et al. (2010)

The increment trajectory plus the 

guess are interpolated to the obs:

The penalty function is more 

akin to 3D-Var than 4D-Var:

We use standard transforms 

to model the spatial 

correlations in C

 'i iδ =∑x α xo 
iα

 'ix

 ( )( ),
g g

H Mδ= +y H x x η

 ( )

( ) ( )

11

2

11

2

T

i i

To o

J
−

−

=

+ − −

∑α α C α

y y R y y



4D-En-Var.    Outer-loop

The analysis increment       may not be a model trajectory.     

How best to add it to the full model to do outer-loop or to start the next DA cycle?

We want good fit to obs at end of window  and a spun-up model.

 ( )( ),
g g

H Mδ= +y H x x η

Remember that the PF model is not an accurate approximation!

Invent a conceptual approximate PF model       such that

Add       to the background to give new       at the beginning of the window 

and model error correction terms     during forecast over window.

 δ x

 M%

 g
x δ x

 η

 ( ),Mδ δ=x x η%
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Conclusions

1. Historical context
Improvement from: high resolution, Bayes, advanced DA, better obs.
4D-Var can fit a good model to high-res, indirect, incomplete obs.

Complex NWP system needs modular development.

2. Reminder of 4D-Var derivations
Fit deterministic model to obs v Bayesian best estimate.

3. Developments in error modelling
Long window or ensemble best ways of improving all aspects.
Non-Gaussian PDF should be symmetric in prior & posterior.

4. Coping with Butterflies
Special treatment needed for important [unobserved] small scales.

Use prior information that we want a state the model likes!

5. 4D-Ensemble-Var
An attractive approach for future massively parallel computers.
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