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Abstract

Satellite retrievals and other 1-dimensional variationaldata assimilation (1D-VAR) applications do
need background error statistics of the atmospheric variables used, in particular temperature, water
vapour and ozone. These error statistics are often providedas single global climatological profiles.
In this report we describe a self-contained program packagethat gives more accurate error statistics
that closely follow the errors used in the ECMWF analysis system. It has been possible to make the
1D-VAR errors simpler than those used by the 3D ECMWF analysis because horizontal correlations
and wind errors are not needed.

The error statistics consist of vertical error correlationmatrices and three-dimensional error vari-
ances. In addition, a variable transform converts the modelvariables (temperature and mixing ratios
of water vapour and ozone) to variables with more Gaussian and less correlated error statistics. Gaus-
sian error statistics make the background errors more robust and removing cross-variable correlations
simplifies the vertical correlation matrices.

The error correlation matrices are derived from ECMWF ensemble data assimilation statistics, and
are an average over a couple of seasons. Each variable has a separate set of vertical error correla-
tion matrices at approximately 625 km by 625 km resolution, equally distributed all over the globe.
Investigation of the geographic, diurnal, and seasonal variability of the correlation matrices indicate
that for averages over several days it is only the geographicvariation that matters, with very little
variation between seasons or between different times of day. The error correlations are provided as a
constant file which is only updated infrequently, followingmajor changes in the ECMWF system.

The background error standard deviations are also derived from the ECMWF ensemble data assim-
ilation system, and are the same as those used by the ECMWF analysis. They are retrieved from
ECMWF as 3-dimensional GRIB fields for the day and time required (currently available at 09 and
21 UTZ). The resolution is a T159/N80 reduced Gaussian grid with approximately 125 km equal
resolution globally.

The variable transform, which in particular removes the variable inter-correlation between water
vapour and temperature, requires the full fields of temperature, water vapour, and logarithm of surface
pressure, and these are also retrieved from ECMWF for the dayand time required.

The interface with the 1D-VAR satellite retrieval application interpolates the background errors bi-
linearly to the retrieval location, which includes the interpolation of model fields and error standard
deviations as well as correlation matrices.

The program package that calculates the background errors is self-contained, including documen-
tation. It is maintained and regularly updated by ECMWF to reflect major model and resolution
upgrades. Following major upgrades, new correlation matrices are needed, and these will be avail-
able from ECMWF as part of the latest version of the software.

1 Introduction

At ECMWF the background error formulation used in the data assimilation is wavelet based and varies in
space and time to take account of geographical differences and the flow of the day (Fisher and Andersson,
2001). The size of a full background error matrix is several orders of magnitude larger than a full model
state, which makes it impractical to store the matrix in memory. Because of this the full background
error is only available as a sequence of simpler operators, currently consisting of: standard deviations,
which change for each assimilation cycle based on the latestavailable ensemble standard deviations or by
other methods; horizontal and vertical correlation matrices, which show geographical variation reflecting
climatological averages; and balance operators to accountfor inter-variable correlations, which are global
climatological averages. For satellite retrievals which combine observations and background information
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for a single atmospheric column or line of sight, horizontalcorrelations are not needed, and a simpler
vertical covariance matrix can be used which still capturesmost of the flow and geographical dependency
of the operationally used background errors. This report will describe this simplified vertical background
error covariance framework and outline its implementationas a set of stand-alone FORTRAN programs
and scripts.

2 The background error covariance model

2.1 Why not use 3D background errors directly in 1D-VAR?

The background errors used in 3D analyses consist of a sequence of operations, including variable trans-
forms, division by standard deviations and applying horizontal and vertical correlations:

• Transform model variables to a set of uncorrelated variables. Example:δT → δTu = δT− f (u,v),
where f (u,v) includes geostrophic balance.

• Divide by standard deviationsσu of the uncorrelated variables.

• Apply horizontal correlations.

• Apply vertical correlations.

For use in 1D-VAR satellite radiance retrievals, the 3D errors are not the right errors to use because the
1D-VAR problem differs in several respects from a 3D data assimilation,

• When no wind is involved, total temperatureδT is used instead of the unbalanced temperature
δTu. The absence of wind correlations simplifies the backgrounderrors.

• Different standard deviations are needed because the analysis variables are different, e. g.σT , not
σTu.

• No horizontal correlations are needed.

• Different vertical correlation matrices are needed because the analysis variables are different, e. g.
for δT, notδTu.

It can be seen that the background errors suitable for 1D-VARare related to the 3D errors used in data
assimilation, but they are simpler. In particular horizontal correlations and balances between wind and
temperature do not need to be included, which is a major simplification. What remains to be used by
the 1D-VAR analysis can be illustrated by writing down the the costfunction for background (Jb) and
observations (Jo) that is minimized by the analysis:

J(δx) = Jb +Jo = δxTB−1δx+Jo(δ x) (1)

The background error costfunction now contains the following sequence of steps:

1. Transform model variables to a set of uncorrelated variables, withK−1 a variable transform oper-
ator which approximately removes error correlations between variables,δxu = K−1δx
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2. Divide by standard deviations of the uncorrelated variables, with Σ a diagonal matrix of back-
ground error standard deviations,δx′ = Σ−1δxu

3. Apply vertical correlations, withV a vertical correlation matrix,δ χ = V−1/2δx′

Inserting this in the background error costfunction gives afew equivalent expressions of the costfunction,

Jb = δ χTδ χ
= δx′TV−1δx′

= δxT
u Σ−TV−1Σ−1δxu

= δxTK−TΣ−TV−1Σ−1K−1δx

(2)

We now describe in more detail how the different operators ofthe background errors are estimated.

2.2 Transforming from model to analysis variables:ΣK

The vertical correlation matrix used by the analysis is expressed in terms of a transformed analysis
variable

δx′ = Σ−1K−1δx (3)

which for ozone and temperature is just normalization with the error standard deviation, but for humidity
another variable is used, which is close to linearized relative humidity (Hólm et al., 2002).

2.2.1 Humidity transform

The transformed humidity variable is designed to reduce thecorrelation between temperature and hu-
midity errors and normalizing the humidity to make the errors more Gaussian. We show in some detail
how it is derived to make the current description self-contained.

One main contributor to the correlation between temperature and water vapour errors is condensa-
tion/evaporation following temperature changes in clouds. In a cloud, the water vapour mixing ratio
is by definition at its saturation valueqc = qs, whereqc is the in-cloud value ofq. For a given back-
ground temperatureTb the Clausius-Clapeyron equation (see e. g. Rogers and Yau 1989) gives how the
mixing ratio changes in response to a temperature changedT,

des

dT
=

es(Tb)L

RvT2
b

⇒ dqc = dqs ≈
qs(Tb)L

RvT2
b

dT (4)

wherees is the saturation vapour pressure,L is the latent heat for mixed phase,Rv is the gas con-
stant for water vapour andqs is the saturation water vapour missing ratio. Here we have used qs =
(Rd/Rv)es/(p−es) ≈ (Rd/Rv)es/p because the pressurep≫ es in the troposphere and the stratosphere
(Rd is the gas constant for dry air). Only a certain fraction of a model gridbox is saturated however, and
the total gridbox increment in water vapour mixing ratio is asum of the in-cloud changes correlated with
temperature errors, and all other changesδqu that are uncorrelated with temperature errors,

δq = δqu +QqTrhbδqc = δqu +QqTrhb
qs(Tb)L

RvT2
b

δT (5)

HereQqTrhb takes into account that the correlation between humidity and temperature errors is mainly
confined to clouds.QqT is determined as a correlation coefficient betweenδq/qs(Tb) and rhbL

RvT2
b

δT and
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provided as a climatological polynomial function of relative humidity and model level. The value ofQqT

ranges from 0 at ca 80% relative humidity to 1 at saturation. Rearranging this expression we get finally

δqu

qs(Tb)
=

δq
qs(Tb)

−QqTrhb
L

RvT2
b

δT (6)

It is useful to divide byqs(Tb) because it makes the background error statistics more Gaussian (Hólm et
al., 2002). The above expression is very close to linearizedrelative humidity, except for the presence of
QqT,

δ rh = δ (
e
es

) ≈ δ (
q

qs(T)
) ≈

δq
qs(Tb)

− rhb
qs(Tb)L

RvT2
b

δT (7)

Because of this relationship, it can be shown that the error variances for δqu
qs(Tb)

are nearly the same as
those ofδ rh (because close torhb = 1 the relationships are very similar and forrhb ≪ 1 the temperature
contribution to the variances is order of magnitude smaller(see Hólm et al., 2002).

2.2.2 Direct and inverse transforms and their adjoints

There are four variable transform operations that could be required within the analysis. First, direct
transform from analysis to model variables and inverse transform from model to analysis variables are
required. Second, for some 1D-VAR applications the adjoints of the direct and the inverse transforms are
also required.

We start with the inverse transformation from the model variables as above,

δT ′ = δT/σT (8)

δq′ =

(

δq/qs(Tb)−QqT
rhbL

RvT2
b

δT

)

/σrh = (δq/qs(Tb)−QqTαδT)/σrh (9)

δo3′ = δo3/σo3 (10)

Here the primed variables are those for which the vertical correlation matrices are valid, see second line
of Eq.2, thus for exampleδq′ = (δqu/qs(Tb))/σrh. This can be expressed in matrix form as follows:

δx′ =





δT ′

δq′

δo3′



 =





1/σT 0 0
−QqTα/σrh 1/(qsσrh) 0

0 0 1/σo3









δT
δq

δo3



 = Σ−1K−1δx (11)

So given profiles of background variables, background errorstandard deviations and increments, a trans-
formed increment is calculated which can be used together with the correlation matrices within 1D-VAR.

The direct transform to the model variables can be derived from the above inverse transform equations
as

δT = σTδT ′ (12)

δq = qs(Tb)
(

σrhδq′ +QqTαδT
)

(13)

δo3 = σo3δo3′ (14)
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or in matrix form:

δx =





δT
δq

δo3



 =





σT 0 0
qsQqTασT qsσrh 0

0 0 σo3









δT ′

δq′

δo3′



 = KΣδx′ (15)

The adjoint of the inverse transform is given by (with superscript ∗ for adjoint operators and variables,
and noting that the adjoint of a linear operator is just its transpose)

δx∗
′

=





δT∗′

δq∗
′

δo3∗
′



 =





1/σT −QqTα/σrh 0
0 1/(qsσrh) 0
0 0 1/σo3









δT∗

δq∗

δo3∗



 = Σ−1∗K−1∗δx∗ (16)

Finally the adjoint of the direct transform is

δx∗ =





δT∗

δq∗
δo3∗



 =





σT qsQqTασT 0
0 qsσrh 0
0 0 σo3









δT∗′

δq∗
′

δo3∗
′



 = K ∗Σ∗δx∗
′

(17)

2.3 What about logq?

If the 1D-VAR variables are logq or logo3, then an additional step is needed to transform fromq to logq
etc. Increments of logq can be approximated by linearizing around the background value qb, so

δ logq≈
δq
qb

(18)

The way to go fromq increments to increments of logq is thus to divideδq by qb. This is easiest achieved
by adding another step to the transform, afterδq has been calculated. This would be done outside the
current program package, on the 1D-VAR code side.

Alternatively, the control variable transform could be modified to give δq/qb directly, which would
require a code change inside the program package. In this case the equations for humidity and ozone
direct and inverse transforms above need to be modified as follows:

δq
qb

= qs(Tb)

(

σrh
δq′

rhb
+QqT

L

RvT2
b

δT

)

(19)

δo3
o3b

= σo3
δo3′

o3b
(20)

δq′ =

(

rhb
δq
qb

−QqT
rhbL

RvT2
b

δT

)

/σrh (21)

δo3′ =

(

o3b
δo3
o3b

)

/σo3 (22)
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2.4 Background error standard deviationsΣ

The background error standard deviationsΣ are obtained from the ECMWF ensemble data assimilation
system, and are operational products that can be retrieved twice daily (valid at 09UTZ and 21UTZ) from
the ECMWF MARS archive (Bonavita et al., 2011). For humidity, the standard deviation of the relative
humidity errors is used, because the analysis variable usedfor humidity (see above) is close to linearized
relative humidity. Figure1 shows examples of the standard deviations for a given day.

2.5 Vertical correlation matrices V

The vertical correlation matrices for temperature, humidity, and ozone are provided as global files with
a correlation matrix every 625 km (Fisher and Andersson, 2001). The correlation matrices are clima-
tological averages over a month to a season, and mainly reflect geographical variations, such as land,
sea, and orography. It is also of interest to understand how the correlation matrices vary by season and
during the diurnal cycle. Currently ECMWF uses a single set of correlation matrices for all seasons, and
only updates them following upgrades to the forecasting system, such as changes in vertical resolution
or major model and observation system changes. In future it is foreseen that the correlation matrices will
be updated more frequently to eventually capture the correlations of the day.

The vertical correlation matrices in Figs2–10 are shown for the 91 model levels, where level 1 is at the
top of the model atmosphere while model level 91 is at surface.

2.5.1 Geographical variation of the vertical correlations

The importance of the geographical variation of the correlation matrices can be seen in the change of the
boundary layer correlations in the three examples of 50N (The English Channel), 20N (Sahara), and 20S
(South Atlantic subsidence area), all at 0E. Even adjacent correlation matrices can vary significantly, if
for example one is over sea and the other over land. The valuesof each correlation matrix are averages
over a 625 km box.

2.5.2 Seasonal variation of the vertical correlations

To investigate the seasonal variation, available samples from the current ECMWF operational system
were split into three periods: JFM 2011, MAM 2011, and SO 2011. Each sample contains 19 days by 9
ensemble analysis forecast differences, spaced every 3.5 days in the JFM and MAM samples and every
1.5 days in the SO sample. This particular sampling was chosen because these fields were available as
part of calculating new operational ECMWF background errors correlations. It can be seen in Figs.5–7
that the seasonal variation is small compared with the geographical variation seen in Figs.2–4. However,
there may be other locations where the seasonal variation islarger.

2.5.3 Diurnal variation of the vertical correlations

The diurnal variation can only be captured twice daily, at 09UTZ and 21UTZ, from the current ECMWF
analysis system. Two samples of 19 days by 9 differences werecreated from the JFMAM 2011 sample
above, one sample every seven days for 09UTZ and 21UTZ. As forthe seasonal variation, the diurnal
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Figure 1: Background error standard deviations at 200hPa for temperature [K] (top), relative humidity [0-1] (mid-
dle) and ozone mass mixing ratio [kg/kg× 1e8] (bottom.
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Figure 2: Temperature vertical correlation matrices at 0E and 50N (left), 20N (middle), and 20S (right).
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Figure 3: Humidity vertical correlation matrices at 0E and 50N (left), 20N (middle), and 20S (right).
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Figure 4: Ozone vertical correlation matrices at 0E and 50N (left), 20N (middle), and 20S (right).

variation in Figs.8–10 is small compared with the geographical variation seen in Figs.2–4. This does
not exclude that the diurnal variation is important at otherlocations though.
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Figure 5: Temperature vertical correlation matrices at (0E,50N) forJFM (left), MAM (middle), SO (right).
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Figure 6: Relative humidity vertical correlation matrices at (0E,50N) for JFM (left), MAM (middle), SO (right).
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Figure 7: Ozone vertical correlation matrices at (0E,50N) for JFM (left), MAM (middle), SO (right).
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Figure 8: Temperature vertical correlation matrices at (0E,50N) for09UTZ (left) and 21UTZ (right).
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Figure 9: Relative humidity vertical correlation matrices at (0E,50N) for 09UTZ (left) and 21UTZ (right).
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Figure 10:Ozone vertical correlation matrices at (0E,50N) for 09UTZ (left) and 21UTZ (right).

3 Programs

3.1 Requirements on retrieval algorithms using the programpackage

The program package assumes that the retrieval applicationprovides profiles of temperature, humidity,
and ozone increments together with their location, i. e. their latitude and longitude in radiances, and
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the number of observation locations. These profiles must have been interpolated to the pressure of the
ECMWF model levels at each observation location, using the ECMWF surface pressure for that location
and time and the ECMWF vertical coordinate parameters. The interpolation of the input profiles is
not part of the program package supplied by ECMWF, because itrequires knowledge of the retrieval
algorithm’s vertical grid, which is internal to each retrieval algorithm. Nevertheless, retrieval of surface
pressure and its interpolation is part of the program package provided by ECMWF, and this can optionally
be used by a retrieval algorithm to obtain the surface pressure and vertical coordinate parameters needed
for the vertical interpolation. Another point to note is that only the correlation matrix is provided, and any
operations on the matrix, like taking its square root or inverse, will be handled by the retrieval algorithms
as needed.

3.2 What the ECMWF background error program package provides

The program and script package supplied by ECMWF (contact the authors for the latest version of the
software) provides what is needed to use ECMWF derived background errors for 1D-VAR and similar
retrieval applications, given a set of increment profiles and locations (see above). A full documentation
is included in the program package itself, in particular start from reading

• README.txt: Instructions on how to install, compile, test, and use the package on ibm and linux
platforms.

The available operations can be summarized as follows:

• A vertical correlation matrixfile is provided with the program package, which has a global set
of matrices for temperature, relative humidity and ozone mass mixing ratio. The matrices are ap-
proximately equally distributed on the globe, as an averageover ca 625 km by 625 km area (32
in latitude byNINT[64cos(latitude)] in longitude). A global mean vertical correlation matrix is
also provided. For any observation location an index is created pointing to the nearest neighbour
correlation matrix for use in retrieval applications. The correlation matrix file can be updated pe-
riodically by ECMWF reflecting changes in vertical resolution, horizontal density of the matrices
or other major upgrades. There is also an option for seasonalor more frequent updates to the
correlation matrices, in line with ECMWF developments in this area.

• A retrieval scriptscripts/retrieve.ksh(see Appendix) contains all that is needed to retrieve the
background model fields and the errors of the day from the ECMWF MARS archive (see available
dates in next section). The fields retrieved are all global model level fields of temperature, specific
humidity, ozone mass mixing ratio, and logarithm of surfacepressure. These are the background
fields. In addition, all global model levels of background error standard deviations estimated by the
ECMWF ensemble data assimilation system are retrieved for the same time, including temperature,
relative humidity, and ozone mass mixing ratio. The errors are currently available at T159/N80
(ca. 125 km) reduced Gaussian grids, whereas the model fieldsare available at up to T1279/N640
(16 km) reduced Gaussian grid. The error fields should be retrieved in their native grid, but the
model fields can be retrieved at a higher resolution.

• Interpolation subroutines interpolate all correlation matrices (retrieve correlations), model and
error fields (retrieve profiles) bi-linearly to a set of observation locations, providing profiles of
background fields and errors matching the input increment profiles (see codesources/bgerr.F90
for these subroutines with full documentation of input and output variables) .
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• A variable transformation subroutinemod2anvartransforms the input increment profiles to the
variables used in the analysis (see codesources/vartransform.f90for mod2anvarwith full docu-
mentation of input and output variables). For temperature and ozone this is simply a normalization
by the background error standard deviations, but for humidity the transform takes into account the
correlation between humidity and temperature errors by forming what is close to linearized rela-
tive humidity. This is the reason why relative humidity background error standard deviations are
used in the normalization of the humidity control variable.The variable transform program does
an ‘inverse’ transform, ‘direct’ transform, and the adjoint of both. Each of these operations may
be required by different retrieval algorithm versions.

• A simple test programtests/bgerrtest.f90and test files containing complete model states and errors
are provided for testing the installation of the program package in different environments. A
README file gives instructions on compilation and use of the program package.

3.3 Available dates forscripts/retrieve.ksh

Because the background errors here rely on the ensemble dataassimilation system (EDA) to provide
background error standard deviations, the retrieval script scripts/retrieve.ksh(see Appendix) for the er-
rors is not compatible with dates before the current form of the EDA was implemented. Here is a
summary of the relevant dates, and options for previous dates.

• After 2010110909 the ECMWF archive contains all that is needed in the script. We only have the
background error fields available at 09UTZ and 21UTZ as 3 hourforecasts, and the time and step
in the retrieval of the errors and the forecast used in the errors should always be:

– step=3

– time=06 or 18

The background errors will be most accurate for times close to 09 or 21, but they can also be
assumed to be the best available estimate for a time window of6 hours on either side of these
times, or a time window of 12 hours after the valid time of the errors. The errors will of course
be less accurate the further away one is from their valid time. Although the degree of accuracy
has not been quantified as a function of time differences, theerrors should still be an improvement
on climatological errors for up to 12 hour time differences.These errors can then be combined
with retrievals using forecasts at different ranges in the 12-hour window. Note the errors are more
accurate after 2011051800 when they began to be used more extensively in the operational system.

• Between 2006020109-2010110821 one can replace the error standard deviations (type=ses) by a
less accurate estimate (type=ef). The retrieval scriptscripts/retrieve.kshwill need modification in
this case and we recommend this only for expert users.

• Between 2004062909- 2006013121 there are 60-level ”ef” standard deviations available. However,
another correlation matrix is needed (for 60 levels, which ECMWF would need to produce), and
we recommend staying within the 91 level period.

• Before 2004062909 there are no ”ef” fields for the standard deviations.

• For intercomparison, we do also still produce the ”ef” fieldstoday (end 2012, but may not in future)
- so a date post 2010110909 can be used to understand the difference between ”ef” and ”ses”. The
”ses” have more geographic variability and gives a better estimate (calibrated against analysis) of
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the background error standard deviation, whereas ”ef” giveflatter fields, less reflecting day-to-day
variations.

4 Conclusions

The program package provided gives flow and geographically varying background error covariance ma-
trices for temperature, humidity and ozone, together with the required variable transforms needed to be
close to the ECMWF implemented humidity analysis formulation. The use of flow dependent back-
ground error standard deviation of the day from the operational ECMWF ensemble data assimilation
system and geographically varying correlation matrices isa considerable improvement compared with
earlier global average version of background errors used in1D-VAR applications. A first look at the
vertical correlation matrices seasonal and diurnal variations showed these to be small compared with
the geographical variation, but further studies are neededto quantify the variation globally. This initial
look does however give confidence that correlation matricesaveraged over one season are valid for other
seasons and at all times of day. Further developments of thisprogram package are foreseen after ex-
perience has been gained in using the package in 1D-VAR applications, and it is possible to extend the
framework with further variables, in particular cloud related variables and trace gasses. For cloud and
trace gas variables, the background error estimation is notas mature as for humidity, temperature, and
ozone, which all are part of the ECMWF operational framework, and attention needs to be given to the
scientific validity of these additional background errors in addition to their technical implementation.
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Appendix: Script retrieval.ksh

#!/bin/ksh

nlev=91
truncation=159
target_errors="errors.grib"
target_fields="fields.grib"

usage="Usage: ${0/*\//} [options] -d <date> -t <time_in_hours> -s <step>\n
\nRetrieve errors and first guess fields from MARS.\n
\nOptions:\n
\t-l NLEV\t\t number of model levels (default $nlev)\n
\t-T TRUNC\t spectral truncation (default $truncation)\n
\t-e TARGET\t target file for errors (default \"$target_errors\")\n
\t-f TARGET\t target file for model fields (default \"$target_fields\")
"

[[ $# == 0 ]] && { echo $usage; exit 1; }

while getopts "hd:t:s:l:T:e:f:" option
do

case $option in
h) echo $usage; exit 0;;
d) date=$OPTARG;;
t) time=$OPTARG;;
s) step=$OPTARG;;
l) nlev=$OPTARG;;
T) truncation=$OPTARG;;
e) target_errors=$OPTARG;;
f) target_fields=$OPTARG;;

*) echo "Error: Unknown option: -$option"; echo $usage; exit 1;;
esac

done
shift $((OPTIND - 1))

date=${date:?"Error: missing date"}
time=${time:?"Error: missing time"}
step=${step:?"Error: missing step"}
grid=$((($truncation + 1) / 2))

mars <<MARS_REQUEST
retrieve,

expver=0001,
class=od,
date=$date,
time=$time,
step=$step,
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level=1/to/$nlev,
levtype=ml,
type=ses,
stream=enda,
repres=gg,
param=130/157/203,
target="$target_errors"

retrieve,
type=fc,
stream=dcda,
repres=sh,
param=130/152,
resol=av,
grid=$grid,
gaussian=reduced,
target="$target_fields"

retrieve,
repres=gg,
param=133/203.128,
target="$target_fields"

MARS_REQUEST
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