Seminar 2013

The ECMWF model, progress and challenges

Nils Wedi*, Mats Hamrud, George Mozdzynski

*European Centre for Medium-range Weather Forecasts, wedi@ecmwf.int

Many thanks to Linus Magnusson and Jean Bidlot

Technology

♦ 4 foci:

- Enabling technology for computations on massively parallel computers for science today
- A cost-effective, low-energy consuming but highly accurate model and data assimilation system
- Code resilience and understanding, what does each part of the model contribute, where is accuracy required, where not ?
- Quantitative measures on how good the forecast is

The Integrated Forecasting System (IFS)

technology applied at ECMWF for the last 30 years ...

A spectral transform, semi-Lagrangian, semi-implicit (compressible) (non-)hydrostatic model

Schematic description of the spectral transform method in the ECMWF IFS model

FFT: Fast Fourier Transform, LT: Legendre Transform

Direct spectral transform (Forward)

Fourier transform:

$$\zeta_m(\theta) = \frac{1}{2\pi} \int_0^{2\pi} \zeta(\lambda, \theta) e^{-im\lambda} d\lambda$$

FFT (fast Fourier transform)

using $N_F \ge 2N+1$ points (linear grid) (3N+1 if quadratic grid)

Inverse spectral transform (Backward)

Reduction in the number of Fourier points at high latitudes is possible because the associated Legendre polynomials are very small near the poles for large m.

Note: number of points nearly equivalent to quasi-uniform icosahedral grid cells of the ICON model.

Aliasing

- Aliasing of quadratic terms on the linear grid (2N+1 gridpoints per N waves), where the product of two variables transformed to spectral space cannot be accurately represented with the available number of waves (as quadratic terms would need a 3N+1 ratio).
- Absent outside the tropics in E-W direction due to the design of the reduced grid (obeying a 3N+1 ratio) but present throughout (and all resolutions) in N-S direction.
- De-aliasing in IFS: By subtracting the difference between a specially filtered and the unfiltered pressure gradient term at every time-step the stationary noise patterns can be removed at a cost of approx. 5% at T1279 (2 extra transforms).

E-W

500hPa adiabatic zonal wind tendencies (T159)

N-S

500hPa adiabatic meridional wind tendencies (T159)

Monday 15 June 2009 00UTC ECMWF. Forecast t+24 VT: Tuesday 16 June 2009 00UTC 500hPa Experimental product.

Kinetic Energy Spectra - 100 hPa

Kinetic Energy Spectra - 100 hPa

Fast Multipole Method (FMM) and spectral filtering (Jakob-Chien and Alpert, 1997; Tygert 2008)

$$f_j = \sum_{k=1}^N \frac{\beta_j P_k}{\tilde{\mu}_j - \mu_k} \qquad \text{For all } j=1,..,\text{J}$$

FMM: We can do above sum for all points j in O(J+N) operations instead of O(J*N) !

Example: From Christoffel-Darboux formula for associated Legendre polynomials We can do a direct and inverse Legendre transform for a single Fourier mode as:

$$\tilde{\zeta}^{m}(\tilde{\theta}_{j}) = \epsilon_{N+1}^{m} \overline{P}_{N+1}^{m}(\mu_{j}) \sum_{i=1}^{J} \frac{\zeta^{m}(\theta_{i})w_{i}\overline{P}_{N}^{m}(\mu_{i})}{\tilde{\mu}_{j} - \mu_{i}}$$
$$-\epsilon_{N+1}^{m} \overline{P}_{N}^{m}(\tilde{\mu}_{j}) \sum_{i=1}^{J} \frac{\zeta^{m}(\theta_{i})w_{i}\overline{P}_{N+1}^{m}(\mu_{i})}{\tilde{\mu}_{j} - \mu_{i}}$$

A fast Legendre transform (FLT)

(O'Neil, Woolfe, Rokhlin, 2009; Tygert 2008, 2010)

- The computational complexity of the ordinary spectral transform is O(N^3) (where N is the truncation number of the series expansion in spherical harmonics) and it was therefore believed to be *not computationally competitive with other methods at very high resolution*
- The FLT is found to be O(N^2 log N^3) for horizontal resolutions up to T7999 (Wedi et al, 2013)

Number of floating point operations for direct or inverse spectral transforms of a single field, scaled by $N^2 log^3 N$

dgemm 🚿 FLT

Matrix-matrix multiply for each zonal wavenumber m

for $l = 0 \rightarrow L$ do

for all j, k boxes do

if l = 0 then

 $S_{0,k} = extract_sub_matrix()$ $compr_sub_matrix(S_{0,k}, A_{0,k})$

store $A_{0,k}$

else

 $S_{l,j,k} = comb_compr_l_and_r_neighb(C, l-1)$ $compr_sub_matrix(S_{l,j,k}, A_{l,j,k})$

store $A_{l,j,k}$

end if

if l = L then

store $C_{L,j}$

end if

end for

end for

With each level l, double the columns and half the rows

Butterfly algorithm: pre-compute $S_{rxs} \cong C_{rxk} A_{kxs}$

Butterfly algorithm: apply $f = S\alpha$

for $l = 0 \rightarrow L$ do

for all j, k boxes do

if l = 0 then

store $\beta_{0,k} = A_{0,k}\alpha_k$

else

store $\beta_{l,j,k}$ = $A_{l,j,k} \times comb_l_and_r_neighb(\beta, l-1)$ end if

if l = L then

store
$$f_{L,j} = C_{L,j}\beta_{L,j}$$

end if

end for

end for

Interpolative Decomposition (ID)

The compression uses the interpolative decomposition (ID) described in Cheng et al (2005).

The r x s matrix S may be compressed such that

$$\left\|S_{rxs}-C_{rxk}A_{kxs}\right\|\leq\varepsilon$$

With an $r \times k$ matrix C constituting a subset of the columns of S and the $k \times s$ matrix A containing a $k \times k$ identity as a submatrix. k is the ε -rank of the matrix S (see also e.g. Martinsson and Rokhlin, 2007).

T1279 FLT using different ID epsilons for INV (1.e-3) + **DIR (1.e-7)**

ECMWF seminar 2013 Slide 25

(Abdalla et al, 2013)

Comparison T1279 1.e-4 INV / 1.e-7 DIR

The FLT in a nutshell – O(N²log³N)

- Speed-up the sums of products between associated Legendre polynomials at all Gaussian latitudes and the corresponding spectral coefficients of a field (e.g. temperature on given level)
- The essence of the FLT:
 - Exploit similarities of associated Legendre polynomials at all (Gaussian) latitudes but different total wave-number
 - Pre-compute (once, 0.1% of the total cost of a 10 day forecast) a compressed (approximate) representation of the matrices (for each m) involved
 - Apply the compressed (reduced) representation at every time-step of the simulation.

Average wall-clock time compute cost of 10⁷ spectral transforms scaled by $N^2 log^3 N$

■ dgemm SFLT

Computational Cost: NH at T3999 vs. H T2047

SP_DYN was 23 percent for this model configuration, and is now 7 percent. Improvement due to exposing 'greater OpenMP parallelism' from 4K threads to a maximum of 4K * 91 threads ; in this case 16K threads.

H T_L2047 L91

Tstep=450s, 0.8s/iteration With 896x16 ibm_power7

NH T_L3999 L91

Tstep=180s, 3.1s/iteration With 1024x16 ibm_power7

% (of total execution time) cost of spectral part of the model on IBM Power7 (all L91, all NH for comparison); Total includes communications

■ COMPUTE STOTAL

All these can be run with hydrostatic code $== \frac{1}{2}$ of above numbers !

Norwegian storm Berit(Xaver) 22-27th November 2011

Faroe Islands

Monster waves battered the shores of the Faroe Islands, and Norway later, both reporting severe structural damage from the storm(s) during this period.

T1279 coupled to 0.25 degree wave-model Faroe Islands hit by storm Xaver (Berit) on 25th November 2011

T3999 coupled to 0.1 degree wave model Faroe Islands hit by storm Xaver (Berit) on 25th November 2011

Extreme events: Hurricane Sandy

NASA Earth Observatory, 28th October 2012

Wave height 72h forecast

MSL pressure 72h forecast

10m - wind speed 72h forecast

~

24-hour precipitation and MSLP 2012-10-27 00z, precip 72 to 96h, 84h for MSLP

NEXRAD 24h precip Oper analysis of MSLP

T1279

T319

T3999

T639

Hydrostatic vs Nonhydrostatic

Hydrostatic Precip 84h to 108h

Non-Hydrostatic Precip 84h to 108h

Hydrostatic vs Nonhydrostatic

Hydrostatic PV330 +120

Non-Hydrostatic PV330 +120

T3999 L91 (~5km)

Hydrostatic vs Nonhydrostatic

a Non-hydrostatic simulation

b Hydrostatic simulation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cloud cover 24h forecast T3999 (~5km)

Era-Interim shows a wind shear with height in the troposphere over the region!

Lothar "Christmas storm"

T1279 (~16km)

T7999 (~2.5km)

T7999 (~2.5km global) large-scale precipitation (ran without deep convection parametrization)

T1279 large-scale precipitation

Identified Issues

- The overall scalability of the IFS and in particular the communication cost of (global) transpositions (gridpoint to spectral to gridpoint).
- Efficient exploitation of and lacking sufficient local parallelism (outside the spectral transforms) suitable for future computing architectures.
- The constant-coefficient, semi-implicit scheme is explicit in the boundary forcing (potentially a steep orography issue).
- Lacking the ability to compute local derivatives and fluxes and a satisfactory treatment of vertical derivatives.
- Lacking the ability to solve an elliptic equation that (nonlinearly) couples horizontal and vertical discretization.
- Coupling of moist physics and dynamics at non-hydrostatic scales.
 ECMWF seminar 2013 Slide 47

CRESTA project

- Parallelism too limited, need to explore new ways to unlock more parallelism
- Overlapping of communication and computations
- Reducing communications and data movement
- New data structures allowing alternative grids
- New approaches to data parallelism and I/O given that ultrahigh resolution spectral transform models may be viable in ensemble mode
- >> See George's presentation

IFS scalability

Panta Rhei Project - ERC Advanced Grant

- Focus on alternative pathways for accurate modelling of multi-scale fluid flows
- Combining several disciplines of Earth System sciences via a unifying modelling framework with the initial focus on advancing a global nonhydrostatic forecast model, and finding an "optimal" equation set/time-stepping algorithm
- Step change in forecast skill, model accuracy and costeffectiveness
- A pioneering numerical approach, where a non-hydrostatic global model is conditioned by global hydrostatic solutions within a single code framework via numerical procedures expressed in time-dependent generalized curvilinear coordinates >> see Piotr's presentation

Additional slides

T7999 large-scale precipitation (ran with deep convection parametrization)

T7999 convective precipitation

(ran with deep convection parametrization)

T7999 convective precipitation

(ran without deep convection parametrization)

T1279 convective precipitation

Transpositions within the spectral transforms

Nonhydrostatic IFS (NH-IFS)

Bubnovă et al. (1995); Bénard et al. (2004), Bénard et al. (2005), Bénard et al. (2010), Wedi et al. (2009), Yessad and Wedi (2011)

Arpégé/ALADIN/Arome/HIRLAM/ECMWF nonhydrostatic dynamical core, which was developed by Météo-France and their ALADIN partners and later incorporated into the ECMWF model and also adopted by HIRLAM.

Hydrostatic Primitive Equations (HPE)

$$\frac{d\mathbf{V}}{dt} = -2(\Omega \times \mathbf{V}) - \nabla \Phi - RT\nabla(\log \Pi) + \mathbf{P}_{\mathbf{V}}$$

 $\frac{dT}{dt} = \frac{RT}{c_{\rm p}}\frac{\omega}{\Pi} + P_{\rm T}$ $\frac{\partial\Phi}{\partial\Pi} = -\frac{RT}{\Pi}$

Non-hydrostatic shallow atmosphere (NHS)

Distinction between hydrostatic pressure and total pressure $\partial \Pi / \partial z = -\rho g$ $p = \rho R T$

Introduce:
$$\hat{Q} \equiv \log(p/\Pi)$$
 'Nonhydrostatic pressure departure'

Here hydrostatic pressure follows from the prognostic surface pressure equation as before !

Note that the geopotential is $\frac{\partial \Phi}{\partial \Pi} = -\frac{RT}{p}$

NHS – continued ...

NHS – For the solution we need the threedimensional divergence

Numerical solution

- Two-time-level, semi-implicit, semi-Lagrangian.
- Semi-implicit procedure with two reference states, with respect to gravity and acoustic waves, respectively.
- The resulting Helmholtz equation can be solved (subject to some constraints on the vertical discretization) with a direct spectral method, that is, a mathematical separation of the horizontal and vertical part of the linear problem in spectral space, with the remainder representing at most a pentadiagonal problem of dimension NLEV². Non-linear residuals are treated explicitly (or iteratively implicitly)!

(Robert, 1972; Bénard et al 2004,2005,2010)

Orographic forcing

T3999 vs T1279 kinetic energy spectra

After 10 days

Global horizontal kinetic energy spectra at 500 hPa height for the first 12 hours of Horizontal kinetic energy spectra plots

the T7999

