Gravity waves: introduction and global view

Peter Preusse

Structure of middle atmosphere

•
$$\frac{du}{dt} - fv + \frac{1}{\rho}\frac{\partial p}{\partial x} = X$$

- steady state, zonal mean: $\Rightarrow -f\overline{v} = \overline{X}$
- *X* by planetary waves and gravity waves

Decelleration of westerlies induces poleward circulation

GW impact on middle atmosphere

Red: Processes which are driven to >50 % by GWs Purple: Indirect effects

General circulation \rightarrow **polar troposphere**

Sigmond and Scaife, J. Clim., 2010

Sensitivity on the strength of GW momentum flux

Quasi Biennial Oscillation QBO After: B. Naujokat

$\textbf{QBO} \rightarrow \textbf{tropospheric weather}$

from Marshall and Scaife, JGR, 2009

Difference of mean winter temperature between QBO phases in NCEP/NCAR reanalysis data.

gravity wave

buoyancy wave ≠ gravitational wave

Isolated Airparcel

Dispersion relation

The full dispersion relation in 3D, including exponential density decrease and Earth rotation is:

$$\hat{\omega}^2 = \frac{(k^2 + l^2)N^2 + f^2 \left(m^2 + \frac{1}{4H^2}\right)}{k^2 + l^2 + m^2 + \frac{1}{4H^2}} \simeq \hat{\omega}^2 = \frac{k_h^2 N^2}{k_h^2 + m^2} + f^2 \quad (2)$$

This implies

$$N^2 > \hat{\omega}^2 > f^2 \tag{3}$$

 \Rightarrow phase velocity and group velocity

$$\vec{c_{\phi}} = \frac{\omega}{|\vec{k}|} \left(\frac{k}{|\vec{k}|}, \frac{l}{|\vec{k}|}, \frac{m}{|\vec{k}|} \right), \quad \vec{c_g} = \left(\frac{\partial\omega}{\partial k}, \frac{\partial\omega}{\partial l}, \frac{\partial\omega}{\partial m} \right)$$
(4)

$$F_{px} = \bar{\rho}(1 - \frac{f^2}{\hat{\omega}^2})\overline{u'w'}; \quad \bar{X} = -\frac{1}{\rho}\frac{\partial}{\partial z}F_{px}$$

Wave clouds at Juelich

Wave clouds at Juelich

Saturation Amplitude

Too large amplitudes result in convectively instable layers. Wave solution:

$$N^{2} > 0 \Leftrightarrow \Gamma = -10 \frac{K}{km} < \frac{\partial (\overline{T} + \hat{T} \sin(mz))}{\partial z}$$
(5)

 \Rightarrow Maximum stable amplitude:

$$\hat{T}_{max} = \frac{N^2 \overline{T}}{gm} = \frac{N^2 \overline{T}}{g2\pi} \lambda_z$$
 (6)

Doppler shift

$$\hat{\omega} = \omega_{gb} - \vec{k_h} \vec{U} \tag{7}$$

$$\hat{\omega}^2 = \frac{k_h^2 N^2}{m^2} \Rightarrow \lambda_z = \left| 2\pi \frac{c - U_{||}}{N} \right| \quad (8)$$

The key quantities

Very simplified:

- The momentum flux decides how much drag can be exerted
- The phase speed decides where the drag is exerted
- The direction decides whether the drag accelerates or decelerates the background flow

CRISTA-1 (1994)

Eckermann and Preusse, Science, 1999

 $F \propto \frac{\lambda_z}{\lambda_h} (T')^2$

Absolute values of momentum flux

CRISTA-2, August 1997

$$F \propto \frac{\lambda_z}{\lambda_h} (T')^2$$

CRISTA

Warner & McIntyre

Absolute Values of Momentum Flux [mPa]

Ern et al., JGR, 2004 Orr et al., J. Clim., 2010 : GW scheme in ECMWF confined by CRISTA

HIDLS: Annual cycle for 2006

Ern et al., JGR, 2011

ECMWF global data and HIRDLS

100

10

0.1

GW momentum flux [mPa]

abs.

29 Jan 2008 ; alt= 25.3 km

Preusse et al., ACP, 2014

- Single day vs. whole month
- General good agreement
- Low latitudes: Satellites show hot spots over continents

Yonsei Convective GW Source

Choi et al., JGR, 2009

Yonsei Convective GW Source

Song and Chun, JAS, 2005

Trinh et al., in preparation

10 years of SABER

Ern et al., JGR, 2011

SABER: poleward shift

Ern et al., JGR, 2011

QBO is wave-driven

cf. Lindzen and Holton, A theory of the Quasi-Biennial Oscillation, JAS, 1968

QBO forcing

Ern et al., JGR, 2014

advection

Ern et al., JGR, 2014

Comparison of GCM and measurements

SPARC gravity wave initiative (reinstated in 2008; lead Joan Alexander).

A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

Marvin A. Geller, M. Joan Alexander, Peter T. Love, Julio Bacmeister, Manfred Ern, Albert Hertzog, Elisa Manzini, Peter Preusse, Kaoru Sato, Adam A. Scaife, and Tiehan Zhou

J. Clim., 2013

Zonal mean climatologies

general agreement of shape

- quantitative agreement (better factor 2) in winter vortex
- indicates problem at summer high latitudes

Findings and challenges

- General shape of global distribution by
 - modulation of tropospheric GWs by background wind
 - individual sources such as orography, convection, spontaneous adjustment
 - Iarge GWMF in southern winter: source still not fully explained
- sources need to be quantified
- QBO driving seams clear, but direction could induce artifacts
- vertical gradient, propagation and dissipation need good accuracy measurements

Infrared limb imaging from space

Assessment

By simulated measurements (limb soundings) through ECMWF data fields:

- Infrared limb imaging will be able to measure all three key quantities:
 - GW momentum flux
 - direction
 - phase speed (inferred)
- zonal mean net GWMF accurate to \sim 30 %
- independent values at several altitudes throughout entire stratosphere

- Gravity waves are important for e.g. QBO and Brewer-Dobson circulation and thus for climate projection
- Gravity wave sources include: orography, convection, spontaneous adjustment, ?
- Oblique propagation is important \rightarrow parametrisation vs resolved?
- GCM ↔ observations: General distributions between models and measurements are coarsly realistic
- Uncertainty ranges are large (factor 2 at best (e.g. 30km, SH winter), order of magnitude at worst).
- 3D distributions from limb imager would be most important break-through

Coupling by propagating waves

Global equation of motion (wind):

$$\frac{du}{dt} - fv + \frac{1}{\rho} \frac{\partial p}{\partial x} = X \tag{9}$$

Separate into large scale \bar{u} and GWs u', $u = \bar{u} + u'$. Acceleration for \bar{u} by GWs:

$$\bar{X} = -\frac{1}{\rho} \frac{\partial}{\partial z} F_{px} \tag{10}$$

Pseudomentum flux:

$$F_{px} = \bar{\rho}(1 - \frac{f^2}{\hat{\omega}^2})\overline{u'w'}$$
(11)