

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Quantifying uncertainty in monthly and seasonal forecasts of indices

Christoph Spirig, Irina Mahlstein, Jonas Bhend, and Mark Liniger

Current monthly and seasonal forecasts

• tercile probabilities

0

3-monthly (weekly)averages of temperaturefor seasonal (monthly) forecasts

bar plots, maps, climagrams

Customers of ER and SFC

- commercial customers
 - (re)insurance

D

- energy providers
- global perspective

• general public

Improve usability of seasonal EUP©RIAS forecasts

- forecasts of indices in addition to basic met. variables
 - indices: (non-linear) aggregation of meteorological parameter over given period
 - indices often include thresholds
 - direct relevance for users
- forecasts with a user perspective while avoiding complex impact models

J

Soil moisture index

- combining monitoring and forecasts (IFS-ENS, IFS-ENS-EXT, ..., seamless)
- input: long-term forecasts @daily resolution, calibrated

Soil moisture index

- appropriate representation of uncertainties
- skill of index forecasts ?

Analysis scheme

Challenge: bias correction of daily data

Problem: 30 years of observations not enough to calculate daily climatology

- approach: apply low-pass filter
- evaluated using perfect model approach (Mahlstein et al., JGR 2015)

Bias correction of daily data

• CRPS of average temperature forecast in JJA (May init)

• CRPSS of average temperature forecast in JJA (May init)

Example of index forecasts

- temperature based indices Heating Degree Days (HDD) and Cooling Degree Days (CDD)
- sums of daily temperatures T_i below / above given threshold (TH) $\sum_{i=1}^{n} \max(TH - T_i, 0) = \sum_{i=1}^{n} \max(T_i - TH, 0)$

• proxies for heating/cooling energy demand

Skill in forecasts of indicators vs skill of the underlying variable

Summer

0

Winter

Skill in forecasts of indicators vs skill of the underlying variable

Summer

0

Winter

J Skill of absolute vs tercile forecasts

CDD forecast JJA, May initialization

CRPSS (absolute)

Verification against observation data sets

HDD/CDD forecasts for months 2-4, Nov/May init

- Daily calibration improves skill in forecasts of climate indices
- Skill largely insensitive to choice of calibration method

- Skill in index at most as large as skill in underlying variable
- Skill in seasonal index predictions is limited

Implications for use of forecasts

Forecast presentation

Basis: HDD forecast as tercile summary

Forecast presentation

Basis: HDD forecast as tercile summary

combine with skill information!

User perspective for aggregation of forecast information

- example of CDD forecast
- energy perspective:

0

- cooling energy demand
- health perspective
 - how many people are affected?

\rightarrow use **population density** for weighting of CDD forecast/obs

Skill of CDD forecast (RPSS)

CDD prediction for August (May initialization)

same analysis for CDD weighted by population density, aggregated to country level

- potential to provide added value in certain areas
- be careful in not provoking overinterpretation
 - combine skill and forecast information
- promote the use of «climatological forecast»
 - added value by considering natural variability

