

Trapped lee waves: a currently neglected source of low-level orographic drag

Miguel A. C. Teixeira¹, Jose L. Argain², Pedro M. A. Miranda³

¹Department of Meteorology, University of Reading, Reading, UK ²Department of Physics, University of Algarve, Faro, Portugal ³Instituto Dom Luiz (IDL), University of Lisbon, Lisbon, Portugal

www.met.reading.ac

www.reading.ac.

Trapped lee waves

Non-hydrostatic

Workshop on drag processes - 12-15

Mountain wave drag

Important for drag parametrization schemes in global climate and weather prediction models

It is known that drag decreases as flow becomes more nonhydrostatic (narrower obstacles) \rightarrow this would suggest that trapped lee waves (highly nonhyrsotatic) would produce little drag

However, trapped lee waves exist due to energy trapping in a layer or interface: wave reflections and resonance \rightarrow may lead to drag amplification

How is drag partitioned into trapped lee waves and vertically propagating (untrapped) mountain waves?

Bell-shaped 2D and 3D circular mountains

$$h = \frac{h_0}{1 + (x/a)^2} \qquad h = \frac{h_0}{\left[1 + (x/a)^2 + (y/a)^2\right]^{3/2}}$$

Workshop on drag processes - 12-15

Linear, hydrostatic, non-rotating, constant / limit

$$D_0 = \frac{\pi}{4} \rho_0 U^2 l h_0^2 \qquad D_0 = \frac{\pi}{4} \rho_0 U^2 l a h_0^2$$

Linear theory

Linearization, Boussinesq approximationInviscid, nonrotating, stationary, uniform flow

$$\frac{d^2\hat{w}}{dz^2} + \frac{k_1^2 + k_2^2}{k_1^2} (l^2 - k_1^2)\hat{w} = 0$$

$$\hat{w}(z=0) = iUk_1\hat{h}$$

 \hat{w} \hat{p} continuous at z=H

Waves propagate energy upward or decay as $z \rightarrow \infty$

Taylor-Goldstein equation

 $w(x, y, z) = \int \int \hat{w}(k_1, k_2, z) e^{i(k_1 x + k_2 y)} dk_1 dk_2$

Workshop on drag processes - 12-15

 $+\infty+\infty$

Reading

 \hat{p} determined from solutions for \hat{w}

 \boldsymbol{z}

 $|k| < l_2$

Case 1

Propagating wave drag (2D)

Gravity wave drag

 $D = \int_{-\infty}^{+\infty+\infty} \int_{-\infty}^{+\infty} p(z=0) \frac{\partial h}{\partial x} dx dy = 8\pi^2 \operatorname{Im} \left[\int_{-\infty}^{+\infty+\infty} \int_{-\infty}^{+\infty} k_1 \hat{p}(z=0) \hat{h}^* dk_1 dk_2 \right]$

$$D_{1} = 4\pi\rho_{0}U^{2}\int_{0}^{l_{2}} \frac{k|\hat{h}|^{2} m_{1}^{2}m_{2}}{m_{1}^{2}\cos^{2}(m_{1}H) + m_{2}^{2}\sin^{2}(m_{1}H)}dk$$

Trapped lee wave drag (2D)

$$D_2 = 4\pi^2 \rho_0 U^2 \sum_j |\hat{h}(k_j)|^2 \frac{m_1^2(k_j)n_2(k_j)}{1+n_2(k_j)H} \quad l_2 < |k| < l_1$$

Resonance condition (2D)

$$\tan\left[m_1(k_j)H\right] = -\frac{m_1(k_j)}{n_2(k_j)}$$

Drag normalized by

$$D_0 = \frac{\pi}{4} \rho_0 U^2 l_1 h_0^2$$
 or $D_0 = \frac{\pi}{4} \rho_0 U^2 l_1 a h_0^2$

Workshop on drag processes - 12-15

Depends on l_1H

Propagating wave drag (2D)

$$D_{1} = 4\pi\rho_{0}U^{2}\int_{0}^{l_{2}} \frac{k^{2} |\hat{h}|^{2} (m_{2}H)(kH)}{\left[kH\cosh(kH) - Fr^{-2}\sinh(kH)\right]^{2} + (m_{2}H)^{2}\sinh^{2}(kH)} dk$$

Trapped lee wave drag (2D)

$$D_{2} = 4\pi^{2}\rho_{0}U^{2} \frac{k_{L}^{2} |\hat{h}(k_{L})|^{2} \left[Fr^{-2} - n_{2}(k_{L})H\right]^{2} - (k_{L}H)^{2}}{(k_{L}H)^{2} \left[H + n_{2}^{-1}(k_{L})\right] + H\left[1 + n_{2}(k_{L})H - Fr^{-2}\right] \left[Fr^{-2} - n_{2}(k_{L})H\right]}$$

Resonance condition (2D)

$$\tanh(k_L H) = \frac{k_L H}{Fr^{-2} - n_2(k_L)H}$$

Drag normalized by $D_0 =$

$$D_0 = \frac{\pi}{4} \rho_0 U^2 l_2 h_0^2 \quad \text{or} \quad D_0 = \frac{\pi}{4} \rho_0 U^2 l_2 a h_0^2$$

Workshop on drag processes - 12-15

 $|k| < l_2$

Depends on

Case 1 (3D): Drag

• D_2/D_0 may be large (~2) \rightarrow some directional wave dispersion

- Drag maxima lower and wider than in 2D: → continuous spectrum, even for trapped lee waves
- Agreement with numerical simulations requires considering both D_1 and D_2
- D_2/D_1 substantially higher than in 2D \rightarrow non-hydrostatic effects more important

Case 1 (2D): Flow field

$$w/(Uh_0/a)$$
 for $l_2/l_1 = 0.2$ $l_1a = 2$

$$l_1 H / \pi = 0.5$$
 $D_2 / D_1 = 0.08$

Propagating waves dominate

 $D_1 / D_2 = 0.06$

Trapped lee waves dominate

Case 1 (3D): Resonant trapped lee wave field

 $w/(Uh_0/a)$ at z=H/2for $l_2 / l_1 = 0.2$ $l_1 H / \pi = 0.5$ $l_1 a = 5$ 30-20-10 у/Н 0--10--20--30-50 10 30 60 20 40 Ò 70 x/H

"Ship-wave" pattern

Numerical simulations $l_2 h_0 = 0.01$

- D_2/D_0 may be large (~3)
- Single drag maximum exists at $Fr \approx 1$
- Agreement with numerical simulations requires considering both D_1 and D_2

• D_2/D_1 increases as l_2a decreases

•••• University of **Reading**

Case 2 (3D): Drag

Department of Meteorology

• D_2/D_0 may be large (~1.5) \rightarrow some directional wave dispersion

• Drag maximum lower and wider than in 2D \rightarrow continuous spectrum of trapped lee waves

- Agreement with numerical simulations requires considering both D_1 and D_2
- D_2/D_1 substantially larger than in 2D and occur for lower $l_2a \rightarrow$ more non-hydrosatatic flow.

Fr

******* University of

Reading

Case 2 (3D): Resonant trapped lee wave field

 $w/(Uh_0/a)$ at z=H

for Fr = 0.85 $l_2 H / \pi = 0.5$

"Ship wave" pattern

Drag coefficient

2D obstacle
$$h = \frac{h_0}{1 + (x/a)^2}$$
 $c_D = \frac{D}{(1/2)\rho_0 U^2 A_{length}} = \frac{D}{D_0} \frac{\pi}{2} lh_0$
3D obstacle $h = \frac{h_0}{[1 + (x/a)^2 + (y/a)^2]^{3/2}}$ $c_D = \frac{D}{(1/2)\rho_0 U^2 A} = \frac{D}{D_0} \frac{\pi}{4} lh_0$

Since for realistic atmospheric and orographic parameters, $lh_0=0.1\sim0.5$, multiplying factor relating D/D_0 and c_D is typically 0.1~0.8

 c_p may easily be of O(1), especially for 2D mountains.

This is comparable to turbulent form drag on obstacles in nonstratified flow.

Workshop on drag processes - 12-15

More details

Teixeira, Argain and Miranda (2013a), QJRMS, <u>139</u>, 964-981 Teixeira, Argain and Miranda (2013b), JAS, <u>70</u>, 2930-2947

Acknowledgements

 European Commission, through Marie Curie Career Integration Grant GLIMFLO, contract PCIG13-GA-2013-618016

Special Issue of Frontiers in Earth Science

"The Atmosphere over Mountainous Regions"

http://journal.frontiersin.org/researchtopic/3327/the-atmosphereover-mountainous-regions

Summary

- 2D waves trapped in a layer may have multiple modes, waves trapped at temperature inversion may only have single mode
- Due to resonant amplification, trapped lee wave drag may be comparable to drag associated with waves propagating in stable upper layer, higher than uniform-flow hydrostatic reference value
- D_2/D_1 increases as l_2a decreases and as mountain becomes more 3D - non-hydrostatic effects. Trapped lee wave drag maximized for $l_2a = O(1)$: wavelength of trapped lee waves matches mountain width
- 3D trapped lee waves produce less drag, and drag maxima are lower and wider: continuous wave spectrum "ship wave" pattern.
- Trapped lee waves give substantial contribution to low-level drag, may be counted mistakenly as blocking drag or turbulent form drag (different dependence)