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The Antarctic Mesoscale Prediction System (AMPS) is a derivative of the Advanced

Research Weather Research and Forecasting (ARW-WRF) limited area model (LAM), with

modifications in physics parameterizations aimed to improve polar prediction (Powers et al.

2003). AMPS forecasts are a single deterministic realization initialized using a 3DVAR

method employed from a Global Forecasting System (GFS) analysis. Data assimilation is not

continuously cycled and AMPS forecasts are initialized from a non-native analysis (a different

model is used in the data assimilation and the forecast). During September-December 2010,

the Concordiasi intensive observing period (IOP) occurred over the Antarctic and parts of the

Southern Ocean, where unique vertical atmospheric profiles were collected from dropsondes

that were deployed from driftsondes within the Southern Hemisphere polar vortex (Rabier

et al. 2010). This provided an opportunity to examine systematic model bias in the AMPS

LAM, where horizontal grid spacing was 45-km at the time of the IOP. This study uses

short-term forecast tendencies to formally diagnose systematic model error for the period 21

September - 30 September 2010. The hypothesis of this study is that the sources of model

bias can be diagnosed to the precise physical parameterization and locations using short-

term forecast tendencies in a method referred to here as the mean initial tendency analysis

(MITA) increment method (e.g., Klinker and Sardeshmukh 1992; Rodwell and Palmer 2007).

To minimize initial condition error so that it is statistically distinguishable from model

error, it is best if the same identically configured model used to create the analysis is used

for forecasts (e.g., Rodwell and Palmer 2007; Klocke and Rodwell 2014). In these cases,

the analysis is referred to as a ‘native’ analysis since the same model is used in both the

data assimilation and forecasts (e.g., Klocke and Rodwell 2014). The departure of the short-

term forecasts from the observed atmospheric state in the early time steps allows for the

potential identification of process-level errors, and this growth of errors is often referred to

as model ‘spin-up’ (Rodwell and Palmer 2007). Thus, the AMPS numerical weather model

and an Ensemble Adjustment Kalman Filter (EAKF) within the Data Assimilation Research

Testbed (DART) framework (Anderson et al. 2009) are used here to create a fully cycled

atmospheric ensemble data assimilation system, which is hereafter referred to as ‘A-DART’

for brevity.

A one-month control ensemble analysis is created for which DART is identically con-

figured as in Cavallo et al. (2013) assimilating the following conventional observations:

Radiosondes, marine buoys, geostationary satellite atmospheric motion vectors (AMVs),

METAR, Aircraft Communications Addressing and Reporting System data (ACARS), Au-

tomatic Weather Stations (AWS), and Global Positioning System (GPS) data. Cavallo et al.

(2016) previously implemented the MITA increment method over a domain in the tropical

North Atlantic Ocean with 36-km horizontal grid spacing using the conventional observations

listed above with the ARW-WRF LAM model. A systematic model bias was diagnosed from

the planetary boundary layer parameterization scheme, and was found to originate from
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erroneously specified sea surface temperatures (SSTs) over the North Atlantic Ocean. In

addition, a systematic warm temperature bias in the free-troposphere was found to originate

from the convective parameterization.

A large-scale upper-level wind bias is immediately evident in the A-DART control. This

bias is evident from the analysis increments of wind and is greatest in the 45◦S-60◦S latitude

range. Comparison of 6-h forecasts to Antarctic radiosonde profiles reveal a strong warm

temperature bias in upper-levels, everywhere above 300 hPa. In addition to A-DART, this

bias is apparent in forecasts from both the stand-alone AMPS and the GFS models. Given

that ARW-WRF and AMPS physical parameterizations do not use a time-varying ozone

profile, and that this time period exactly coincides with the annual depletion of Antarctic

ozone, it is first hypothesized that a large-scale upper-level circulation bias is present due to

too much shortwave heating over the Antarctic continent as a result of erroneously high ozone

concentrations. Two experiments are then devised to test this hypothesis: (1) Implement

time-varying, latitude-dependent ozone profiles in the physics, and (2) assimilate AMV data

from polar-orbiting satellites. Both experiments result in only modest reductions in model

bias. Therefore, the MITA increment method is then applied to determine where additional

model bias originates.

While the MITA increment method has been more commonly used in global models,

Cavallo et al. (2016) is the only study where it has been applied to a limited area mesoscale

numerical weather prediction model. They found that analyzing forecast tendencies over

shorter time intervals can be successful as long as the forecast model has appropriately

spun-up to represent the mean analysis increment over the 6-h data assimilation cycling

period, which in their study was sufficient after about 30-minutes. In the present study,

this was found to be sufficient for forecast tendencies beginning at 1 hour, or 25 model time

steps.

Statistically significant cold temperature biases are found in the boundary layer from 0-4

km above ground level (AGL) (700-1000 hPa), and in upper-levels from 10-20 km AGL (20-

300 hPa). This cold bias is in contrast to the warm bias seen from radiosonde comparisons,

however, it is noted that radiosonde locations are predominantly located around 60◦S latitude

in the Antarctic. A decomposition of the forecast tendency components reveals that the

upper-level bias derives from the dynamics and longwave radiation tendencies equatorward of

60◦S latitude near the locations of geostationary satellite AMV observations. To test whether

the geostationary AMV observations are biased, the case is re-cycled with Atmospheric

Infrared Sounder (AIRS) satellite retrievals and results in substantially reduced bias. Given

the number of AIRS retrievals is much greater than the number of AMV observations, it is

concluded that the geostationary AMVs exhibit a possible wind bias, where the wind from

AMVs is too strong. Regarding the boundary layer bias, A-DART is again re-cycled to

test whether well-documented cloud-phase errors in polar regions (e.g., Sandvik et al. 2007)

contribute to a cold mid-tropospheric temperature bias. Model bias is reduced approximately

by half, and the reduction in bias occurs primarily in the storm-track region over the Southern

Ocean and over sea ice areas.
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